SIAH1 targets the alternative splicing factor T-STAR for degradation by the proteasome.

نویسندگان

  • Julian P Venables
  • Caroline Dalgliesh
  • Maria Paolo Paronetto
  • Lindi Skitt
  • Jared K Thornton
  • Philippa T Saunders
  • Claudio Sette
  • Keith T Jones
  • David J Elliott
چکیده

T-STAR is one of three members of the SAM68 family of RNA-binding proteins that have been shown to be involved in various gene expression pathways including the control of pre-mRNA splicing. We employed a two-hybrid screen to identify proteins that interact with human T-STAR. The predominant interacting proteins were the E3 ubiquitin ligases SIAH1 and SIAH2. We found that SIAH1 bound to an octapeptide sequence in T-STAR targeting it for proteasome-dependent degradation. Rodent T-STAR orthologues (also known as etoile or SLM2) were not targeted for degradation by SIAH1. However a double amino acid substitution of mouse T-STAR that mimics the human SIAH1-binding site brought mouse T-STAR under in vivo control of SIAH1. Using a minigene transfection assay for alternative splicing activity we showed that human T-STAR, like its rodent orthologues can influence splice site choice and that human, but not mouse, T-STAR-dependent alternative splicing is modulated by SIAH1. Western blots of protein from purified germ cells indicated that SIAH1 protein expression peaks in meiosis. In mouse, T-STAR is co-expressed with SIAH1 during meiosis but, in humans, T-STAR is only strongly expressed after meiosis. Comparative sequence analysis showed SIAH-mediated proteasomal degradation of T-STAR has evolved in the primate lineage. Collectively these data suggest that SIAH-mediated down regulation of alternative splicing may be an important developmental difference between otherwise highly conserved T-STAR proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphorylation of the alternative mRNA splicing factor 45 (SPF45) by Clk1 regulates its splice site utilization, cell migration and invasion

Alternative mRNA splicing is a mechanism to regulate protein isoform expression and is regulated by alternative splicing factors. The alternative splicing factor 45 (SPF45) is overexpressed in cancer, although few biological effects of SPF45 are known, and few splicing targets have been identified. We previously showed that Extracellular Regulated Kinase 2 (ERK2) phosphorylation of SPF45 regula...

متن کامل

Two high-resolution structures of the human E3 ubiquitin ligase Siah1

Siah1 is an E3 ubiquitin ligase that contributes to proteasome-mediated degradation of multiple targets in key cellular processes and which shows promise as a therapeutic target in oncology. Structures of a truncated Siah1 bound to peptide-based inhibitors have been reported. Here, new crystallization conditions have allowed the determination of a construct encompassing dual zinc-finger subdoma...

متن کامل

Structural basis of RNA recognition and dimerization by the STAR proteins T-STAR and Sam68.

Sam68 and T-STAR are members of the STAR family of proteins that directly link signal transduction with post-transcriptional gene regulation. Sam68 controls the alternative splicing of many oncogenic proteins. T-STAR is a tissue-specific paralogue that regulates the alternative splicing of neuronal pre-mRNAs. STAR proteins differ from most splicing factors, in that they contain a single RNA-bin...

متن کامل

Cytosolic splice isoform of Hsp70 nucleotide exchange factor Fes1 is required for the degradation of misfolded proteins in yeast

Cells maintain proteostasis by selectively recognizing and targeting misfolded proteins for degradation. InSaccharomyces cerevisiae, the Hsp70 nucleotide exchange factor Fes1 is essential for the degradation of chaperone-associated misfolded proteins by the ubiquitin-proteasome system. Here we show that theFES1transcript undergoes unique 3' alternative splicing that results in two equally activ...

متن کامل

The Tissue-Specific RNA Binding Protein T-STAR Controls Regional Splicing Patterns of Neurexin Pre-mRNAs in the Brain

The RNA binding protein T-STAR was created following a gene triplication 520-610 million years ago, which also produced its two parologs Sam68 and SLM-1. Here we have created a T-STAR null mouse to identify the endogenous functions of this RNA binding protein. Mice null for T-STAR developed normally and were fertile, surprisingly, given the high expression of T-STAR in the testis and the brain,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 13 14  شماره 

صفحات  -

تاریخ انتشار 2004